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ABSTRACT 
In this paper, which is part II in a series of two, the investigation of the Galerkin 
finite element solution to the Helmholtz equation is continued. While part I con- 
tained results on the h-version with piecewise linear approximation, the present 
part deals with approximation spaces of order p > 1. The method is assumed to 
be uniform both w.r. to h and p. As in part I, the results are presented on a 
one-dimensional model problem with Dirichlet/ Robin boundary conditions. In 
particular there are proven stability estimates, both w.r. to data of higher regu- 
larity and data that is bounded in lower norms. The estimates are shown both 
for the continuous and the discrete spaces under consideration.   Further there 
is proven a result on the phase difference between the exact and the Galerkin 
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It becomes evident that the error estimate for higher approximation can - with 
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by a numerical evaluation. 
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F. Ihlenburg and I. Babuska 

1    Introduction 
•   .v. A ™r+ (nf two) of an investigtion devoted to the numerical 

This paper is the second part (of two) ot an m        g (Helmholtz) equa- 
analysis of the Galerkin finite element method for the red^cedJa d ^ have 

following one-dimensional model problem: 
Let ft = (0,1) and consider the boundary value problem, 

u"(x) + k2u{x)   =   -/(x) 
u(0)   =   0 

«'(1) - ifcu(l)   =   0. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

or, equivalents the variational problem: Find u € tf(O), «(0) = 0 such that 

ß(tt, „) = jf («'(«)*(*) " *M*)iX*)) ^ " «'MW) = Jo f{xHx)dX 

h0
^Zt\\f^%^ the case of large wavenumber *, we assume 

throughout the paper that k > 1. 
We showed [IB]: 

Al. For data / € L2(0,1), the BVP (1.1-1.3) has unique solution „ € F2(0,1). 

A2. For data / € H\0,1)', the VP (1.4) has unique solution u € #(0,1). 

A3. The form B defined by (1.4) is continuous for each fixed wavenumber k: 

\B{u,v)\ < C0(k)\u\Mi 

with Co = 1 + k + k2. 

A4. The Babuska-Brezzi constant 7 of the VP (1.4) is inversely proportional to the 

wavenumber k. 

Remark !: Obvious the f tements Al and A2 hoia true for **££*£* of 
the data; in general, the operators given by BVP (1.1-1.4) and    r v     ; 
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mappings from H" to Hs+2. 

For the Galerkin finite element method with piecewise linear approximation (p = 1) 
we then proved: 

Fl. The finite element solution is (asymptotically) quasioptimal w.r. to the H1- 
seminorm provided k2h is sufficiently small, where h is the size of the elements. 

F2. The discrete B-B-condition holds with 7^ ~ |. 

F3. In the preasymptotic range, the error bound in i/^-seminorm consists of a term 
of order kh (reflecting the error of best approximation) and a pollution term 
of order k3h2 (reflecting the phase difference between exact and finite element 
solutions). 

Finally, we conluded from a numerical evaluation that the terms mentioned in F3 
do indeed occur in the error and, consequently, the estimate (obtained from F3. by 
setting 6 = kh) 

|e|i<C^ + C2^
2, (1.5) 

where C\6 is the minimal error in the approximation space, cannot be principally im- 
proved. 

In the present paper we extend our study to elements of arbitrary (but fixed) poly- 
nomial order p. Due to the oscillatory character of the propagating solutions, the 
application of higher order (egs., quadratic or cubic) elements is considered a natural 
choice in many applied computations (cf. [TPl], [TP2] and references therein). How- 
ever, except for an asymptotic error estimate, no results stemming from the numerical 
analysis of Galerkin-type FEM for Helmholtz problems seem to be available for p > 1. 
In the abovementioned asymptotic estimate, which is given without rigorous proof in 
[BayGTu], it is assumed that k2h < 1 (cf. Theorem 3.2 of this paper). As we showed 
in part I, this assumption on the meshsize does not cover the size of practically applied 
meshes where the wavenumber k (but not P, which is a significant difference for large 
k) is commonly normalized1 by the stepwidth h [TPl], [HH]. 

Consequently, as in part I, it is the principal goal of the present investigation to 
show error estimates that hold under assumptions on hk only. We call these esti- 
mates "preasymptotic" in order to distinguish the results from the abovementioned 
asymptotic estimates.   In section 3 of this paper, we prove two error estimates that 

M.e. h is choosen such that the product hk remains close to some apriori fixed value 
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hold in the preasymptotic range. Both elates are "££^^^",1 
the best approximation (naturally, £^^ t^o^ned b' using 

degree of hp    m the pollution term. ^I1UCI freauencv fc, we see that 
the exact solution is sufficiently regular and oscillating with *WW*> 
the pollution term of the second estimate has (in fc, A and p) the order P 
difference between the exact and the finite element solutions. 

"sphase«^^^ 

ÜT Ä^ÖlS EKbi exact and the 0** finite 

nit itJ f; of «*. * («f. *rÄ££Ä£ 

^fturns out (hoth theoretic* and in the -^f^^tA! 
in the best approximation estimate grows on y moderately w,t, p.On the oftehaa 

the constant in the estimate of the pollution m ^"™f"^ Sn"ed in 

is sharp w.r. to p. 

The paper is organized as follows. In section 2 we fix notations and discuss a defi- 

Lttigate the Galerkin finite element ^^J^^SJ^t^^ 
tion 3.1) we identify the «M»»™£» *«£ 8Tect"n 37we prove the proposition 
elementsolutionproceduretsubsect^ 
on the phase lag  Theorem 3.2). hubsection ö.t X2-data 

Tail^Ä^ 
^ Im^onln ^^^ -sses specific 
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interpolation properties w.r. to u. It is these interpolation properties that we make 
use of in the error analysis where we show that the finite element error is majorized 
by certain norms of the difference u - s. Since u - s occurs as the data in variational 
problems related to the error estimation, we have to prepare the error analysis with 
stability specific propositions. Thus prepared, we turn to the error analysis of the 
Galerkin finite element method (subsection 3.5). We show an asymptotic estimate and 
then, in light of the previous discussion, turn to a study of the finite element solution 
in the preasymptotic range.We show that, for oscillating solutions, the pollution term 

is of the order of the phase lag. 
Finally, in section 4, we discuss results of selected numerical experiments that have 

been carried out to evaluate the error estimates of section 3. 

2    Analytic solution properties 

2.1    Notations and Preliminaries 

We will use the following notations: 

• Constants: If not stated otherwise, all constants C,D,E,... or C,-, where i is a 
natural number, are understood to be generic, independent of all parameters of 
the given estimate, and having, in general, different meanings in different context. 
However, some specific constants that are used repeatedly with the same meaning 
in different context are marked by literal subscript; so, we write Ca for a constant 
arising from the principal approximation estimate in the discrete space, and so 

forth. 

• I2(0,1) is the space of all square-integrable complex-valued functions equipped 
with the inner product 

(v,w) := /   v(x)w(x)dx 
Jo 

and the norm   
HI :=vK4 

• iP(0,1) denotes the Sobolev space 

Hs = [u\u € L2 Ad'u e L2,i = l...s} 

where d{u are the derivatives of order i in the distribution sense.  As usual, we 

define the subspace 

H°o(0,l) = {ue ff'(O,l)|0*u(O) = 0^(1) = 0,» = 0...S - l}. 
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We will also work with subspaces H[0 and Hs
o) consisting of functions with Dirich- 

let data 0 given only in x = 0 or x = 1, resp. By \u\, := \\dsu\\ a seminorm is 

given on Hs. A norm of the space H"(0,1) is defined as ||u||, := (ELo \u\l) • 
On #*, Hf0 and Hs

o) the seminorm | • |a is a norm equivalent to || • ||,. 

• H~3(0,1) = (H°{0,1))' denotes the dual to H3
(o space equipped with the norm 

• As usual, /<«">, i = 0,1,2,..., denotes the i-th derivative of /. We generalize 
this notation for integration: /(-'> is a function s.t. 0*'/<-">(a:) = f(x). More 
specifically, we define for / € L2(Q) and i = 0,1,... 

Jx 

With these definitions, the dual #'-norm of a L2-function / is equal to the X2-norm 

of /("'): 

Lemma 2.1 For f € L2(ü) and / = 0,1,2,... 

11/11-/ = ll/H)ll (2-2) 

holds. 

Proof : Let / = 1 and write F = /(_1). Then, by partial integration, 

m= sup ^=supMf 
"   "     veLHQ)   \\v\\       veLHO)   \M 

holds with V := ßv(t)dt.  Obviously V € H^Ü) and V = v.  On the other hand, 
every V G H}0(ti) can be represented by an integral of a L2-function, hence 

This proves the statement for / = 1. The induction to higher / is obvious and the proof 

is completed.   <d 
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Variational forms arising from the Helmholtz equation are, in general, indefinite. 
One can obtain, however, coercive forms if the wavenumber is properly restricted (we 
write K in order to distinguish this problem from the general case where k may be 
large). For later use, we consider here the case of Dirichlet boundary conditions: 

Find ueV = Hl(tt) such that for all v € V 

BK(u, v) = fQ u'v' - K2 fQ uv = (/, v). (2.3) 

holds. 

Lemma 2.2 Letu € V = Hl(il) be the solution to the VP (2.3) with data f. Assume 

that 0 < K < a < -K, then 

ll-'ll ^ zjTrfl/l (2-5) 

.,-2 
71 lu-.l   <   -^—2\\fi-

x)\l (2-6) 

Proof :   All inequalities are trivial for u = 0, hence we may, without loss of 
generality, assume ||u|| > 0. It is easy to see that, for all u G Hl{ti), 

\\u'\\ > x||u||. 

Hence 
BK(u,u)>(ir2-K*)\\u\\* 

and 
7T2-K2 

BK(u,u)> s—H«'!!2. 
7T 

From the first inequality we easily conclude eq (2.4): 

= sup m>m>^-a
2
)M. 

Equation (2.6) follows similarly. 
Eq (2.5) follows from (2.4) by 

||u'||2 = (/,") + ^2|l"l|2<ll/HNI + «2|Hr- 
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The proof is completed.   <1 

Remark 2: The statement of the lemma holds also if u and v are choosen from a 
Hubert subspace Vh C V. Indeed, since obviously minuev(|u|i/||«||) < minu6vh(|u|i/||u|i), 
the form BK is strongly elliptic on the subspace and the same arguments apply. 

2.2    Stability estimates for higher p 

In part I we proved stability estimates for L2- and tf-^-data. We now generalize 
these properties in two directions. Namely, we first consider data of higher (than L2) 
regularity and prove that for / > 2 the solution norm \u\l+1 is bounded by k' ^{fWi-i- 

We then show a dual result, i.e. we bound |u|i by ||/_m||. In this case we consider 
data of a specific type - 'bubble' data - for which the integrals vanish at the boundaries 
of ft. The sense of this assumption will become clear in the error analysis. 

Theorem 2.1 (Continuous stability): Let f be the data and u the solution of the 
BVP (1.1-1.3). Assume, for I > 1, f(x) € H'-^l). Then u € #'+1(0,l) and the 

estimate 
l4+i < C.(/)*'-1||/||/-i (2-7) 

holds for a positive constant CS{1) < Dl, where D does not depend on k and I. 

Remark 3: Except for the dependence on k (and /), the statement is similar to the 
well known regularity result for the Laplace equation (cf. [Sch, p.52/53]). 

Proof : Let us first consider the case 1 = 2. We have to prove |u|3 < Cfc||/||i. We 
start from the Green's function representation of u (see part I for details): 

u(x)= I' G(x,s)f(s)ds (2.8) 
Jo 

where , ., 
1   [ sinfcze"";   0 < x < s 

G(x,s) = -< (2.9) 
sin ksethx;   s < x < 1 

By partial integration, 

«(*) = [H(x, s)f(s)]s=l - f H(x, s)f'(s)ds (2.10) 
*/0 
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Wlth f ismkxeiks + l;   0 < x < s 
H(x,s):=jG(x,s)ds = -\ • (2.11) 

J K   { coskse,kx; s<x<l 

For any fixed s (or x, resp.), H{x, s) is a ^-function of x (or s, resp.). In the boundary 
points, H{x,0) and H(x, 1) are smooth (C°°) functions. We now estimate 

\u(x)\ < \H(x,0)\\M\ + \H(x,l)\\f(l)\ + sup\H(x,s)\\\f'\\. 

From eq (2.11) we have directly 

Vz,5:     \H(x,s)\<^ 

and with 
V. :     \f(s)\ < y/2\\f\\r 

(for the proof see, e.g., [BKS]) we get 

Nl < | (l+2V§)||/||i. (2-12) 

For an estimate of the derivatives of u, differentiate in eq (2.10) to obtain 

«'(*) = [Hx(x, s)f(s)YsZl - f Hx(x, s)f'(s)ds (2.13) 

and from this and differentiation w.r. to x in (2.11), 

H1<^(l+2V§)||/||i. (2-14) 

Similarily, since H € H2(tt), we obtain differentiating (2.13) 

|u|a<(l + 2>/5)||/||i. (2-15) 

Finally, since u € H3(Cl), the differential equation u'" + k2u' = /' holds (at least in the 
weak sense). Hence 

H3<fc4H? + 2fc2H1|/|, + |/i;. 

and with (2.14) we obtain 

M! <c2P||/||2 + 2cfc||/||2 + 11/11? 
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or, equivalently, 
|«|3<C*||/||i (2-16) 

which proves the statement for / = 2. 

For higher / we proceed analogously. First we integrate in eq (2.8) by parts (/ - 1) 
times: 

+(_iy-2[G(-^)(x,S)/c-2)(,)];:; (2.i7) 

Jo 
where G^jHx,s) = /G-^-x){x,t)dt with G^(x,s) := G(x,s) and appropriate inte- 
gration constants for continuity at x = 5. 

For fixed x resp. s, the regularity is now G^j\x, s) € H>+1 (0,1). At the boundaries 

we have again G<-'">(x,0), <?<-'">(*, 1) € C°°(0,1). 
Therefore differentiation of G^fa,*) w.r. to ar is is well defined at most / times. 

Hence for j = 1,...,/, 

uO-)(x)|   <   iGu-^.O)! |/(0)|+ |Gü-1)(*,l)| |/(l)|+...+ 

+ Gü-|+1>(x,0)  /«'-a>(0)| + |C!^-|+1>(a:, 1) |/('-2>(l) + 

+ \[1Cfi>-i+V(x,8)fl,-1Hs)d' 
\Jo 

The data is bounded in any point by 

Vx € [0,1], Vj :      |/W(*)| < ^||/W||i < V5||/||i+i. 

Generalizing eq (2.11), the integrals of the Green's function can be written in the form 

G+-m)(x,s) = AT(1+mV(*>*) + k-2Pm-i(x,s) 

where <p{x, s) is an oscillating part (with sup \<p\ < 1) and Pm_j is a sum of polynomials 
of degree m - 1 in s and x, resp. Consequently, Fm_i is bounded on Ü and 

f Ca(i,m)r2 + C2(j,ro)tf-m-1   if  j < "» 
|G(j-m)(x,s)| < 

&J -m-l if  j >m 
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In particular, for j = / - 1 there exists a constant C3(l) - maxj,m(Ci(i,m),C2(i,m)) 

s.t. 
vSl-x\x)\ < c3 (2 (it'-

3 + k1-4 + ... + k-1) + r1) V2 U/H,.!. 

Similarly, for j = I there exists C^l) s.t. 

u^(x)\ < CA (2 (F-2 + F-3 + ... + l) + l) y/2 ||/||p-i. 

Hence for k > 1 and / > 2 there are constants C5(l) and C6(/) not depending on k s.t. 

MP-I   <   C5P-3||/||P-! (2-18) 
|«IP   <   CehT'WfWp-i (2-19) 

hold. By their definition, C5 and C6 are of order /. 
Then, finally, 

<k4\u\l1+2k2\u\i-i\f\i-i + \f\U 

< (k4C2
5k

2l~6 + 2PCs*'"3 + l) H/llf-i 

and the statement readily follows. The proof is completed.   < 

We now proceed to a second stability result that is dual to the first one, i.e. we will 
bound lower solution norms by negative norms of the data. We employ two auxiliary 
problems: 

1. Consider the 2nd-order Dirichlet BVP on Ü = (0,1). 

w" - k2w = -g (2.20) 

w(0) = to(l) = 0 (2.21) 

and the associated variational problem: for g € #x(0,1)' find u € #J(0,1) s.t. 

Vu e #*(0,1) :    Bx{w,v) = J w'v' + k2 Jo wv = Jogv = (g,v)        (2.22) 
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2. Consider the 4th-order Dirichlet BVP 

w'"'+k4w = g (2-23) 

u>(0) = u;(l) = u/(0) = u;'(l) = 0 (2.24) 

and the associated variational problem: for g € H2(0,1)' find u € H2(0,1) s.t. 

.25) Vt; € H2
o(0,1) :    B2(w, v) = J* W + A:4 jf* uw = jf ^ = (*,»)       (2 

The forms B1 and £2 are coercive, hence eqs (2.22) and (2.25) have unique solutions. 

Lemma 2.3 Let m and u2 be the solutions of Bi{w,v) = (g,v) and B2(w,v) = (g,v), 

respectively. 

IKII < \\g<-»\\ (2-26) 
Then for u\ 

and for u2 

||„»||   <   \\g^\\ (2-27) 

*||«'2||   <   ^Ik("2)ll (2-28) 

ib2||«'a||   <   \U~X)\\ (2-29) 

hold. 

Proof : Let ||| • |||i and ||| • |||2 be the energy norms induced by the forms Bx and 
B2, resp. In these norms, the B-B-constant is trivially 7 = 1 and hence 

IIMIIi < nifliiii 

|IKIIl2<IIMII2. 
It is then easy to see from the definitions of the various norms that 

IK||<|||tti|||i< IIMIIi ^IMI'i^ll^ll 

IKII<IIKII|2<IIMII2<lbll2 = ll5(-2)ll 
hold. This proves (2.26) and (2.27). 
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To show eq (2.29), let u € H2
0{ü). From 

0 < (Ml - *2H)2 

we conclude 
2k2\\u"\\\\u\\ < B2{u,u) 

and, by Schwarz inequality and partial integration, 

B2(u,u)>2k2\(u,u")\ = 2k2\\u'\\2. (2.30) 

On the other hand, also by partial integration and Schwarz inequality, 

B2(u,u)<\(g(-1\u')\<\\gl-1)\\\\u% 

Hence /   x 

2k2\\u'\\2<\\g{-1Wl 

Cancelling ||u'|| we obtain (2.29). 
Finally, multiplying (2.30) by the trivial relation B2{u,u) > \\u"\\2 we have 

2k2\\u'f\\u"\\2<B2{u,u)2. (2-31) 

"112 
But B2(u,u) is majorized by ||^-2)||||u"||, and (2.28) readily follows cancelling ||u"|| 
and taking roots. This completes the proof.   < 

Theorem 2.2 (A dual stability result): Assume that, for integer m > 1, there is 
given a function f € L2(ü) such that f^(0) = /<-'>(l) = 0 for i = 1,... ,m.  Let 
u € H\0{ü) be the solution to the VP (1.4) with data f. 

Then ,   x , 
Itili^dJb-H/^ll + ftll/t-^H (2-32) 

holds with Ci,C2 independent of k. 

Remark 4: The assumption on the data means that m integrals of / vanish in x = 0 
(note that all integrals vanish at the endpoint by definition). Without this assumption 

we can just prove that 
\u\i < C k \\fl-V\\ 

(see part I). In general, |u|i cannot be bounded by a term C\\f^\\ indepenently of k. 
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Proof : (1) For m = 1 the statement simplifies to 

Mi<Ck\\f(-V\\ 

and is directly obtained from the B-B-condition (Introduction, A4.) and general theory 

([BA]). 

(2) Let m = 2. The basic ingredience of the argument is the introduction of a smoother 
kernel to the Green's function representation u(x) = (G(x, s),f{s)) of the solution. We 

define 
K(x,s):=G(x,s)-H(x,s) 

where H(x.,s) is the Green's function to the first auxiliary problem (2.22). Per defini- 
tion of Green's functions, the equations 

Hxx(x,s)-k2H(x,s) = -8s(x) (2.33) 

Gxx(x,s) + k2G(x,s) = -8s(x) (2.34) 

hold (in the sense of distributions). Hence, after substraction, 

Kxx = -k\G + H). (2.35) 

Since G, H € H\Vt) (as functions of x for any fixed 5) it follows that K € H3(ü). We 
have constructed an equivalent integral representation of u as 

u(x) = I' K(x, s)f(s)ds + I' H{x, s)f(s) := Ul(x) + u2(x). (2.36) 
Jo Jo 

For estimation of ||ui|| we integrate by parts 

u[(x) = f Kx(x,s)f(s)ds = £ KXS3(x,s)fl-2\s)ds, 

(note that the boundary terms vanish due to the specific assumption on /) hence by 
Cauchy-Schwarz inequality 

K(x)|<||/^||||/(-2)||. 

From eq (2.35) and the symmetry property of Green's functions, Kxss = (G + H)x and 

||/^||<*2(||G*|| + Py) 
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follows. It is straightforward to show that ||G,|| and ||ffs|| are bounded independently 
of k and we thus have 

K(x)\<Ck*\\ß-% (2-37) 

To estimate u2 we apply eq (2.26), Lemma 2.2, for g = /: 

H\\ < ll/^ll 
which, together with eq (2.37) yields the statement, case 2. 

(3) Consider the case 3 < m < 6. In analogy to the previous step, we introduce a 
still smoother kernel to the integral representation of u. Let us prove the extreme case 
m = 6. We start from eq (2.36) and define 

L(x,s):=K(x,s)-J(x,s) 

where J(x, s) is a Green's function with the same singularity as K. Then 

u(x)    =     f1 L(x, s)f(s)ds + C J(x, s)f(s) + I H(x, s)f(s) 
Jo Jo ° 

:=   u0{x) + Ul(x) + u2{x). (2-38) 

To find the appropriate J, add eqs (2.33) and (2.34): 

(G + H)IX(x, s) + k\G - H)(x, s) = -26{x, a). 

Multiplying this eq by -k2 and substituting K = G-H,eq (2.35) leads to 

Kxxgx(x, s) - k4K(x, s) = 2k2 6.(x, s). 

Hence if J(ar, 5) is the Green's function to the second auxiliary problem with data 
g(x) = 2 k2f(x) then 

Lxxxx = {K-J)xxxx = k4(K + J). 

Since K, J € H3(Ct) it follows that L € H7{ü). Thus, integrating by parts, 

K(*)l   =   \JLxss33SS(x,s)f{-6)(s)ds 

=   k4\j(K + J)sax(^^-6)(s)ds 

=   k4 I (k2 J(G + H)x(x, s)f(-6Hs)ds + J Jxfl-
4\s)ds) 
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and therefore 
KII<c*V-6)ll + *4KII 

where u3 is a solution to the second auxiliary problem (2.25) with data g = 2A:2/(_4). 
From Lemma 2.2 and Poincare's inequality, 

IK||<K|2<4P||/(-6)||, 

hence 
Ikll < CU6||/<-6)||. 

By definition (2.38), «i is the solution to the VP (2.25) with data g = 2k2f and u2 

solves the VP (2.22) with data /. Then it follows from Lemma 2.2. that 

and 
Kll < ll/^ll 

so that finally u can be estimated as 

\u\i<C,kS\\f^\\ + C2\\f^\\ 

which proves the statement for m = 7. 
For m = 4 ... m = 6 the argument is completely analogous, the only difference being 

the number of partial integrations in the representation of u0. For m > 7, we intro- 
duce further smootheners and proceed in the same manner. The proof is completed.  <1 

3    Finite element solution 

In this section we analyze the ^-version of the Galerkin finite element method with 
approximation order p. We first identify the finite dimensional approximation space 
Vh C HUti) and prove two properties of the best approximation in i^-seminorm. 
After an outline of the finite element solution procedure (subsection 3.2) we turn to 
the analysis of a h-p Galerkin finite element method for the numerical solution of the 
model problem. In subsection 3.3. we prove a result on the phase difference between 
the exact and the numerical solutions. In subsection 3.4. we give several stability 
estimates for the numerical solution ufe. We prove a discrete inf-sup-condition for 
general p and conclude stability of ufe w.r. to L2-data, measured in I?- or if-1-norm, 



Finite Element Solution to the Helmholtz Equation II... 17 

respectively. We then proceed to the proof of a dual estimate in still lower norms, given 
for specific 'bubble' data as it is encountered in the error estimation for p > 1. All 
stability constants are explicitly computed w.r. to the wavenumber k. The analysis 
of the finite element method is concluded with error estimates (subsection 3.5.)- 

3.1    The approximation space Vh 

Assume that the solution domain Ü has been uniformly divided into n disjunct intervals 
A,- = (x,-i,x.) called finite elements. Let h = x{ - ar,-_i (stepwidth). The set of nodal 

points 
Xh = {0 = xo,x1,...,xn = l} (3.1) 

will be called finite element mesh. We will consider mesh functions defined on Xh 

and refer to them by subscript h; for the nodal value of a mesh function uh in a node 
Xi G Xh we will write shortly u,- := Uh(xi). 

Let p > 0 be integer and A a finite element. We denote by SP(A) the linear space 
of all polynomials with domain of definition A and degree < p. For given mesh, we 
define the space of piecewise polynomial, continuous functions 

Vh:=Sl(0,l):={s6H}M,   «(*) k € 5P(A,),   i = l...n}. 

Thus by definition Vh C H\0{Q,l). If not stated otherwise, we will assume that Vh is 

equipped with the //^-seminorm. 
Within the elements we introduce the local coordinate ( by linear mapping A,- -> 

/ = (-1,1). The polynomials in SP(I) are then written as linear combinations of the 
nodal shape functions 

and (if p > 1) the internal shape functions 

N,(0 = ii-i(0 ; / = 3,4,...,p+l 

where fa is written in terms of the Legendre polynomials Pj 

(see [SB, pp. 38/39]). The internal shape functions vanish at the element boudaries, 
forming the subspace SP(I) = span {iV3, N4,..., iVp+1} C SP(I). 
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Let A,- = (xi-ifXi) be a finite element of length h. Denote by (V)A the L2 inner 
product on A and by || ■ ||A the induced local Z2-norm. Similarly we use the notation 
|| ■ ||7 on / = (-1,1). On SP(I), an inverse inequality (in p) is given by the well known 
Markov Theorem2 stating for y € SP(I) the inequality 

\\y'\\i<Cinv(p)P2\\y\\i (3-2) 

with Cinv(p) = (p+ 1)7(PV2) [Be]. Hence Cinv{p) < ^ and Cinv(p) -» l/>/2 for 
p —» oo. 

We now prove that for any u € H,+1(tt) one can find a piecewise polynomial, 
nodally exact (on Xh.) function s € Vh s.t. 

• s is an optimal (in h and p) approximation of u in the i^-seminorm and 

• the integrals of s are nodally exact, quasioptimal approximations of the integrals 

of u. 

Theorem 3.1 (Approximation in "Vh): Let l,p be integers with 1 < I < p and let 
u £ Hl+1(0,1). There exists an s G Vh = Sp

h(0,1) s.t. 

1. (nodally exact approximation) 

VXi6Xh:    SW(xi) = uW{xi),    m = -p+l,...,0 (3.3) 

2. (order of approximation) 

(L \ l-m+l 

-j |u|,+1,    m = -p+l,...,l       (3.4) 

where Ca satisfies: 

1. Ca(-l) = 1 (formal definition) 

2. Ca(0) = 1, 

3. Ca decreases for 0 < / < y/p, 

4. Ca increases for I > y/p and 

2This inequality is usually given in the I°°-norm (cf., egs., [N, p. 124]). We use an Invariant [Be]. 
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C.(P) = (0'(>rp)-1/4 (3-5) 

is the maximum of Ca(l) over I € {0,1,... ,p}. 

Remark 5: With respect to the stepwidth h, the estimate (3.4) is the standard ap- 
proximation result of finite element theory (see, e.g., [Sch, pp. 46-49]). 

Remark 6: For / = 0,1 the statements are proven in [BKS]. The following argument 
is a generalization of this proof. 

Proof : We start on the local level. Let A,- be a finite element and let I = (-1,1). 

We write u'(0 € H'(I) C L\I) as 

oo 

i=0 

where P,(£) are the Legendre polynomials of order i and equality is understood in the 

L2-sense. Set 

t=0 

and define the integrals (i = 0,1,2,...): 

tt(-*)(0   =   u^(l)-/1«(-*fl,(T)i/T (3.6) 

s(-)(0   =   u<-Hl)-fs{-i+1)(r)dr. (3.7) 

We will now prove that (3.3) holds.  Let first t = 0, then from eqs (3.6, 3.7) we have 
trivially u(l) = s(l). Further, by definition, 

u(0 = «(!)-/  «'(r)dr = u(l)-2aiy   Pj(r)dT = u(l)-2a0 

= U(i) - lx s'(t)dt = u(i) - J2aJ f pAT)dT = s(-1)- 
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Now we integrate «'(£)> using the well known relation 

Pi(r) = (PU(r)-P!+l(r))/(2i + l) 

to obtain ^ _ _ 

«(0 = "(1) + «o(A(0 " ft(fl) + X>   '+    2,-4-1 • 

Integrating once more (we write U := u*-1)), 

/i 2ai 
u(r)dr = C/(l)-2u(l)-2a0-—. 

Obviously, the same result is obtained from the integration of the polynomial s(£) since 
only the coeffient of P0 influences the result of integration over the whole interval /. 
By similar argument we conclude that integration of the polynomial s on the one and 
the function u on the other hand leads to the same result exactly p - 1 times. Indeed, 
by replacing repeatedly Pi(r) = (PU(T) - ^+1(T))/(2» + 1), we see that with the »th 
succesive integration of u(() or s(£) the coefficient a,- enters the set of coefficients mul- 
tiplying P0. Since the norms of w(,) and s® depend only on the coefficient of P0, both 
norms are equal until P0 is multiplied by ap-U i.e. in general u<-p+1)(0 = s(_p+1)(0 
and u(_p)(0 ^ s{~p)(0- Thus nodal exactness, eq (3.3), is proved on an arbitrary 
element and hence it holds globally. 

Let us now prepare the proof of estimate (3.4). With above definitions, the error 

of approximation is 

«=p 

and from the orthogonality property of the Legendre polynomials we have 

oo        9 

M'-ESTT* (3-8) 
»=P 

It can be proven (see [BKS], chapter 3) that s' is the best .^-approximation to u' on 
/ and the estimate 

II«'- «'II < ^P Mm (3-9) 
holds for 0 < / < p, where the constant Ca has the properties 2.  - 5.  given in the 

theorem. 
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Integrating the error e', we get 

After reordering, 

•=P+I y 

with a-,-, a- i "i+i ui-i 
6« = 7T~ 

(3.10) 

2i + 3     2* - 1 

and the norm is 

„ „2 _  ^      2     2 q2 2 q2
+1        2 

" ihi 2i + 1        (2p + !)2 2P - 1     (2P + 3)2 2p + 1 

We apply the relation (a - b)2 < 2a2 + 2fe2 to obtain (for i > p + 1) 

, 2 <    2q2_q     ,     2q?+1 

«" - (2i-l)2     (2i + 3)2 

andthus Ä^.if o2_2_ 

i=^1^2?TT-2p^öi2i + l+2^l.=^2  *-2i + l 

holds. Taking now into account the second and third member in the r.h.s. of eq (3.10) 

1   °° 2 

and hence 

we get 

e|| < l-\\e% (3.11) 

From eq (3.9) it then follows that 

P 

holds for 1 < / < p. 

l<ll s ^HW <3-12> 
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Let us conclude the local analysis showing an orthogonality property for e. Since 
s' is the I2-projection of u' on Sp-1(7), 

Jju'(0-AO)Cdt = 0 (3.13) 

holds for m = 0,1,... ,p - 1. We claim that e(£) = £(«'(<) - *'(*))# is orthogonal to 
S"-2(I). 

Indeed, for / > 0 we compute 

= /V(o-*'(0)/V^ 

m + 1 ./-l 

which, together with eq (3.13), proves that elSp~2(I). 

This completes the local analysis. By back-transform I -* A and summation over 
the elements we conclude eq (3.4) for H1- and I2-norm , i.e. cases m = 1,0 in eq 

(3.4). 
It remains to prove eq (3.4) for dual norms. We apply a standard argument [Sch]. 

By definition, for m > 1, 
ii ii (e^) e _m = sup -j-j—. 

veff(» Mm 

Let Pmv € S£(tt) be the L2-projection of v € #{
m on SR{to). Then by orthogonality, 

as proven in step 1, 

||e||_m= sup  r-  
v£H™ \V\m. 

holds for 1 < m < p - 1. Applying Schwartz inequality and eq (3.12) we conclude for 
1 < I <p and 1 < m < p - 1, the estimate: 

||e|U < CM (I)" l«l». CM (£)"{£ < C0,m) (£)""" |„|,+1 

where 2 

C(/, m) = <7.(/)<7.(ro) < (|)    (TT?)"
1
'

2
. 

This completes the proof of Theorem 3.1.   < 
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3.2    The finite element method 
Let 14 C H\ (ft) =: V be the approximation space introduced in the previous subsec- 
tion.  As usual, function u € Vh is called the finite element solution of the VP (1.4) 

\fveVh:     B{uje,v) = (f,v). (3-14) 

The approximation space Vh = Sp
h(ü can be written as a direct sum of two sub- 

spaces, namely, sm = sun) © sj(ft), 
where S\ is the space of continuous, piecewise linear functions and 

5?(n) = ©5J(Aj) 

with 
1S

,
0

p(Ai) = span{iV|,...,iV^+1}. 

Here, A,- are the finite elements, hence SJ( A;) are local spaces of "bubble" polynomials. 
Writing now u/e = uh + up,v = vh + up, where uh,vh € ^(Q) and up,t;p € 60(SI), 

we have from eq (3.14) 

Vwfc € 5j[(ft) :     B(ufe, vh) = (/, vh). (3.15) 

Vt;p € 50
p(fi) :     £(u/e, «p) = (/, «p). (3-16) 

From eq (3.15) we conclude 

Vvfc € Sj[(«) :     B(tifc, t;fc) = (/ + *2«P, vh). (3.17) 

On the other hand, eq (3.16), inforce of S>(tt) = ©?S*(A), decouples into n indepen- 

dent local systems 

\/w€Sp
0(A):     BA{up,w) = {f + k2uh,w)A, (3.18) 

where £A is the restriction of the form B to the finite element A. By formally solving 
these equations, we express up in terms of / and uh. The result can be inserted into 

(3.17), giving rise to 
5(«A,Vfc) = (/>*>*)• ^'iyj 

Discretising this equation by standard approach, we obtain the linear system 

[Lh]{uh} = K}, (3.20) 
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where [Lh] is a (n x n) matrix, usually called the condensed stiffness matrix, and 
{tf/J = Ufe\x is the vector of nodal values of the finite element solution on the mesh 
Xh- The piecewise linear part of u/e is determined by eq (3.20), provided [Lh] is 
nonsingular. The internal part up can then be found locally by eqs. (3.18). 

For the sake of further analysis, we outline below the details of the solution proce- 
dure: 

Step 1 (Local approximation and static condensation): On any element Aj, the trial 
function u and the test function v are written as scalar products of shape functions 

{N{, N2,..., Np+1} and the vectors of unknown coefficients {a3} = |aj, a2,..., a3
p+1J 

and {b3} = {&i,^,...,fc£+i} , respectively. Identifying a{ = uixj.^.a3, = U(XJ) and 

b{ = Vj-i,b{ = VJ, we have uh\^ = a[N{ + a2Ni. The condition that ufe be the 
solution of the VP (1.4) for all v G Vh leads locally (i.e. on Aj) to 

{V}T[B3){a3} = {Vf{r>} (3.21) 

with the (p-f 1) x (p + 1) square matrix (/,m = 1,.. .,p + 1) 

[£'■]=[{/   N3{x)'N3
m{x)'dx-k2 j  N3(x)N3

n(x)dx-ikNf(l)N3
n(l)} 

and the right hand side 

{rj} = {(f(x),NJ(x))A),l=l,...,p+l}T. 

Now, decomposing 
'[BÜ]  [BQ- 

[Bj] = (3.23) 

. [BL]   [BL] . 
where \B

3
U   is the left upper 2 x 2-submatrix of [B3], and assuming for the moment 

that \B22   is nonsingular, we define 

[CB3] = [B3
n] - \B{2] [B

3
22}~

1
 [B3

21}. (3.24) 

Then, by local variation of {&£,... 6£+i}T, we find - cf. eq (3.18) - 

{Vj-r VJ} [CB3] {X} = {V3~* Vj} { f7j    } ' (3'25) 

(3.22) 
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where 

Tnii-MM" 
4 

rp+i 

(3.26) 

On uniform mesh, the local matrices [CBj] are identical on all elements and can be 

written in the form 
SP(K)   T,{K) 
TP{K)   S,(K) 

[CB) = 

where SV{K) and TP(K) are rational polynomial functions of K = kh/2. 

(3.27) 

Remark 7: The analogy to the /i-version with piecewise linear approximation is given 
by the following consideration. On Aj, the homogeneous h-p-ünite element solution is 
written as 

ufe(x) = u/.fo.OJVTOO + Ufe(xi)N?(x) (3.28) 

where the condensed shape functions Nf € Sp(Aj) are local variational solutions to 
the homogeneous Helmholtz equation with appropriate boundary conditions. 

The local stiffness matrix is written as3 

[CBj] = 
_B{NZ,Nl)   B(NZ,N?)m 

which is again the formal analogon to the h-version (cf. part I). 

Step 2 (Global assembling and solution for uh): Enforcing continuity of the test func- 
tions in the nodal points of Xh we obtain the set of linear equations (3.20). The discrete 
operator Lu is an n x n tridiagonal matrix: 

[£*] = 

2SP(K)    TP(K) 
T,(K)    2SP(K)    T,(K) 

TP(K)    2SP(K)       TP(K) 
TP(K)    Sp(K)-iK 

(3.29) 

3see next subsection for the proof 
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the global right hand side vector is 

r\ 

Rh = {  fj-i + fj (3.30) 

and K = kh/2 is a measure for the number of elements per wavelength (see part I, 

remark 8). 

Step 3 (Local "decondensation"): The discrete equivalent of eqs (3.18) 

'     «3     ' 
f        1      > 

#22 < >  =  < » — 

.   aP+l   - L   "p+1   J 

BL] 
Uj-l (3.31) 

can be inverted - provided 
the finite element solution. 

# 22 is regular - to determine locally the bubble modes of 

3.3    Discrete Green's function and discrete wavenumber 

The nodal values of the finite element solution on Xh are found from the tridiagonal 
linear system (3.20). On uniform mesh, this system consists of formally identical 
difference stencils 

Tv{K)uh{x^) + 2Sp(K)uh(xj) + Tp{K)uh(xj+1). 

Equating these stencils to zero we find the homogeneous solutions 

yhl = exp(ik'xh),  yh2 = exp(-ik'xh) (3.32) 

where the parameter k' is determined as a function of k, h and p by 

SP(K) 
cos(k'h) = w (3.33) 

The discrete wavenumber k' is, in general, different from k, causing a phase difference 
between the finite element and exact solutions. 
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The discrete finite element solution {uh} can be written as 

uh(xi) = hJ2Gh(xi,sj)Rh(sj) (3.34) 

with the discrete Green's function (cf. part I) 

( sin k'xi (A sin k'sj + cos k'sj) x < s 

sin k'sj( A sin k'x, + cos k'xi)       s < x < 1 
Gh(k\xusj)- siak,h 

(3.35) 

Note that the Green's function does not depend directly on p. The dependence 
occurs only implicitely through the parameter k'. This means that the estimates of 
G that are given in part I for piecewise linear approximation carry over to higher p 
without modification - except for the estimation of k' in terms of k, h and p. 

Theorem 3.2 (Phase difference): Letp>\ and k' be the parameter in the funda- 
mental system (3.32) of the set of linear equations (3.20). 

Then, if hk < 1, 

»-**«>(¥)$)' <3-36) 
where k is the exact wavenumber, Ca is the approximation constant from Theorem 3.1. 
and C does not depend on k, h and p. 

Remark 8: The phase difference between the exact and the finite element solution 
has been extensively studied in [HH] (for p = 1) and [TP1] (for p = 1,2,3). As a 
conlusion from numerical experiments, the statement of the theorem has been induced 
in w.r. to k and h in [TP1]. We now prove that with increasing p the phase difference is 

also going down with a factor (f )2p (7rp)-1/2(2p)-*p, i.e. the improvement with higher 
approximation is still more significant than it was assumed in above named references. 

We will give the proof of this theorem after the following preliminary discussion: 
First we observe that any homogeneous solution to the Helmholtz equation can be 
written on each inner element Aj C Ü as 

u(x) = u1t1{x)-ru
2t2{x) (3.37) 

where ul := u(xj-i),u2 := U(XJ) are the nodal values of u on Xh, whereas tut2 satisfy 

t" + k2t = Q   on A; (3.38) 
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with inhomogeneous local Dirichlet data 

t1(xj.1) = l,   h(xj) = 0 (3-39) 

or 
t2(xj.1) = 0,   h(xj) = l, (3.40) 

resp. 
By discrete evaluation of the VP (1.4) in the nodal points of Xh we find that, for 

; = l,...,n-l, 

T0(K)u(xj+1) + 2S0(K)u(xj) + UKHxj-i) = 0 

holds with 

T0(K)   =   B{tut2) = B{t2,tx) 

2S0(K)   =   B(tuh) + B(t2,t2). 

The fundamental solutions are 

zhi = exp(ikxh),    zh2 = exp(-ikxh) 

and ,m    «JO cos(kh) = -jr^y 

holds. 
Second, writing the finite element solution on Aj as 

u„(*) = u)eN?{x) + u%N>(x) 

where Nf,N% € 5p(Aj) are approximate solutions to eq (3.38) with boundary condi- 
tions ((3.39) or (3.40), resp., we have 

Tp   =   B(N?,N2
V) = B(N2

V,N!) (3.41) 

2SP   =   B(N!,N!) + B(N^N^). (3.42) 

To see this, let us analyze the BVP's (3.38, 3.39) and (3.38, 3.40) on / = (-1,1). 
After linear transformation Aj —> I we arrive at 
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We assume that K < a < 2TT. The boundary conditions are 

<(-!) = !,    <(1) = 0 

or 

resp 

*(-!) = 0,    t(l) = l 

(3.44) 

(3.45) 

To formulate an equivalent variational problem, we write the admissible functions 

as 
t = Ni + fa    or    t = N2 + fa 

resp., where fa € H]{I) and NUN2 are the linear shape functions.  The objective is 
then to find $ € H]{I) such that 

Vr €#(/):    BK(tf,T) = -BK(Ni,T) (3.46) 

holds for i = 1,2, resp. (cf. [SB, pp. 16/17]). 
The real bilinear form 

BK(u,v) = {u\v')1-K2(u,v)I 

is symmetric and coercive (cf. Lemma 2.2). We can find uniquely defined 'one element 
solutions' Nl,Np

2 by solving: Find fl € Vh = SP
0{I) s.t. 

Vcr € Vh :    BK(tf,<r) = -£*(#»*) (3.47) 

holds. 
We now show eqs (3.41, 3.42). Writing (with the usual summation convention for 

i = 3,...,p+l) 

N?(0   =   NriO + aiNjU) 

we find from eq (3.31) the vectors {ax}, {a2} to be 

It is now easy to see that 

[Bv]-1 [Bn] { I } ;     {a2} = - [522]"
a [*»] { J } . (3.48) 

[CB} = 
BKWM)   BK(N!,N>) 

[BKW,N?)   BK{Nl,Nl) 
(3.49) 
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Indeed, 

BK{N?,N?)   =   BK(N1,N1) + BK(N1,a?Nm) + BK(a[Nl,N1) + BK(a[Nl,a?Nrn) 

=   5A-(iV1,iV1) + 2{^(7Vi,7Vm)}{ai} + {ai}T[{5A'(iV/,iVm)}]{a1} 

=   BxiNuNr) - 2 (j J }   [*„]) ([S»]"1 [B2l] { J |) 

+ ({ l }T[B2i]
T [B22]-T) [B22] ([Bv]-1 [B21] | J }) 

=   5„[1,1]-{J}   [Bn] [B22]-1 [B21] { J } 

=   OB[l,l] 

and so forth for C£[1,2],C5[2,1] and CB[2,2\. In the equation chain above, we have 
repeatedly used both the symmetry of the form BK and the local stiffness matrix. 

This validates eq (3.49). Transforming back to global coordinates and assembling, 
we obtain eqs (3.41, 3.42).   < 

In the proof of Theorem 3.2. we will also use the following result. 

Lemma 3.1 Let tut2 and N?,N% be exact and finite element solutions to eq (3.43) 
with Dirichlet data (3.44) or (3-45), resp. 

Then for i = 1,2; j = 1,2 

BK(U - Nf,tj - NJ) = BK(N?,N?) - Bxitutj) (3.50) 

holds. 

Proof : 
Let us specify in eq (3.46) 

» = 1,T = # 

* = 2,r = # 
i = l,r = <f>2 

BK(Ni,<l>o
1) = -BK(<!>0

1,P1) (3.51) 
BK(N2,<f>01) = -BK(<f>0

2,P1) (3.52) 
BK{N1M = -BM1$1) (3.53) 
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and, similarly, in eq (3.47) 

,' = l,<r = ft :      BK{Nuft) = -BK(ft,ft) (3-54) 

i = 2, a = ft :      BK(N2,ft) = -**(#. #) (3-55) 

i = l,a = ft:      £*(#!,#) = -BM,tf). (3-56) 

Furthermore, since S* C Hi, 

i = l,r = ft :      £*(JVi,#) = ~BK(ft,ft) (3-57) 

i = 2, r = # :      ^(iV2, fl) = -Bx(#, #) (3-58) 

which, together with eqs (3.54) and (3.55) shows 

BK(ft,ft) = BK(ft,ft) (3-59) 

**(#,#) = **(#.#)• (3-6°) 
We now can check the statement of the lemma by direct computation. For t = j = 1 

the l.h.s. is 

BK{ti-Nlh-Nl)   =   BKiNi + ft-Ni-faK + tl-Ni-tf) 

=   BK{fi, ft) ~ 2BK(fi, ft) + BK(fo ft) 

=   BKWM-BKMM 

by eq (3.59). The r.h.s. is 

BK{NlN{)-BK{tutx)   =   BK(Nx + ft, N, +ft)-B^Nx + ^Nr+ <!>[) 

=   BK(N1,N1) + 2BK(N1,ft) + BK(ft,ft) 

-BjciNuN!) - 2BK{Nu<f>\) ~ BK(ft, ft) 

=   BK(ft,ft)-BK(ft,ft) 

where we have used eqs (3.54) and (3.51). 
This validates the statement for i = j = 1. The computation of the remaining cases 

i = 1, j = 2 and i = 2, j = 1,2 is entirely analogous.   <1 

We are ready to give the proof of Theorem 3.2. 

Proof :   (Theorem 3.2.)   We will show that, neglecting higher order terms of 

| cos(k'h) - cos(kh)\ < C?a»® (^ V (3.61) 
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holds with an independent constant C.   Assuming this relation for the moment we 
continue with (d(p) := CCa

2(p)/4) 

o .   k' + k,   .   k'-ku 2 sin —-—h sin —-—n 

Let k'h - kh = e, then 

= | cos(fcA) - cos(k'h)\ < k2h2C *(sr 
|2sin-|< sin(M + |) 

2p 

< 
kWdjp) (g)2p 

*:Ä 

Since by assumption (hk/2p)2p < 1 we see that e is small and we may neglect higher 
order terms in the Taylor expansion of 2 sin §. Thus we obtain 

e < hkCi(p) (!£ 
1p 

and replacing e = k'h- kh we conclude the statement of the theorem. 

We now have to prove eq (3.61) which we write in the form 

•Jp        Jo 

lp lo 
< k2h2C 

'■<)"■ 
(3.62) 

Consider any internal element A being mapped on the master element I = (-1,1). On 
I, the exact homogeneous solution of the VP (1.4) is represented by 

«er(0 = "L<l(0+«L<2(0 

where 

smK£      cosK( 
tl®   =   ~2^K + 2cosK 

smK£      cos if £ 
t2^>   =     2^1< + 2cosK' 

are solutions of the BVP's (3.43, 3.44) or (3.43, 3.45), resp., with K = kh/2. 
The finite element solution is written on I as 

«/•(0 = «}.*f (0 + «/. W0 
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where Nf,N2 are approximate solutions to the BVP's (3.43, 3.44) or (3.43, 3.45), as 
discussed in the preliminaries. 

By continuity of BK, 

\BK(U - Nhtm - Nm)\ < (1 + K2)\U - N^t» - Nm\r, 

and applying now eq (3.9) we have 

\BK(t, - Nhtm - Nm)\ < (1 + K2)^^- \t,\p+1\tm\p+1 (3.63) 
p*p 

for /, m = 1,2. 
By direct computation, 

f K2P+2\\ti\\2    if   p   is odd 
Mj+i = (3-64) 

I    K2p\tt\
2      if   p   is even 

with 

||*,||2 = § + 0(K2);   \tt\
2 = i + ©(#<). 

Here and in the following, 0(K2) means an expression of the form C\K2 -f C2K
4 +... 

with constants C,- not depending on h, k and p. 
Also by direct computation, 

BK(ti,U) = BK(t2,t2) = \ + 0(K2) (3.65) 

and 

BK(h,t2) = BK{U,tx) = ~\ + 0(K2). (3.66) 

Finally, we recall from Lemma 3.1 that 

BK(t, - Nhtm - Nm) = BK(NhNm) - BK(thtm). (3.67) 

holds for /, m = 1,2. 
Returning to the proof of eq (3.62), we have 

\SPT0-S0TP\   =   \BK{tuh)BK{NuN2)-BK{tut2)BK{Nl,Nl)\ 

=   |5*(*i,*i) (BK(h - Nut3 - N2) - BK(h,t2)) - 

BK(U,t2) (BK(h - NiA - 7VX) - BK(ti,ti)) I 

=   {BKih^BKih-Nuh-NJ 

-BxiU^BKiU-Nutt-Nx)] (3.68) 
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Here, we applied eq (3.67) to expand the expression on the r.h.s. Thus 

|5pr0-50Tp|   <   \BK{tut1)\\BK(ti-Nltt2-N2)\+. 
\BK(h,t2)\\BK(h - Nx,U - Ni)\ 

and applying eqs (3.63, 3.65, 3.66) leads to 

|5PT0 - 50TP| < (i + 0(K>)) ((1 + K^ {\iiM*U + WW) • 

For odd p we then have directly by (3.64) 

\SPT0 - S0TP\   <   (I + «*)) (d + K^K^ (| + 0{K
2))) 

<   £«(*>)'gW (3.69) 

where we neglected terms of order 0(K>). Then also (3.62), and hence the statement, 

holds since 
\Spl0 — OpJ-pl 

\T0TP\ 

and it can easily be seen that 

|rorp| = \BK(ti,hWK(tt - N\M ~ N3) + BK(ti,U)\ 

is bounded from below by a constant independently from K,p. 
If p is even then we insert eqs (3.65, 3.66) into eq (3.68) to get 

\SPT0-S0TP\   <   ±\BK(h-N1,h + h-(N1+N2))\ + 

0(K2) (\BK(ti - Nut2 - N2)\ + \BK(ti - NuU - M)|) 

For the first term in this equation we have 

IBxih-Nuh + h-W + N^l   <   ^-|<iUil(*i + *a)Ui 

cos K£ 
< 

P 

Ca(p)2 

n2p 
K2p\t 11 cosK 

J{2p+2 

<   CCa{p)2—^- 



Finite Element Solution to the Helmholtz Equation II... 35 

with C not depending on K,p. Again, terms of order 0{K2) have been neglected. 
For the second term, a similar estimate follows directly from eqs (3.63,3.64). Thus the 
estimate (3.69) holds also for even p, and the statement follows by similar argument.  < 

3.4    Discrete stability 
In Part I, when investigating the h-version with p = 1, we proved the stability estimate 

Kell < Cll/H 
and showed that the inf-sup-constant on the discrete subspace is 7^ = Cfc_1. A stan- 
dard corollary then yields the stability estimate 

iKj^cfciir1«- 
We will now show that both results carry over to higher p. 

Further we will define in this subsection a specific data subspace that we will en- 
counter in the error analysis. In this subspace we will prove stability w.r. to higher 
integrals of the data - the discrete analogon to Theorem 2.2. 

Let hence ufe € Sp
h be the finite element solution to the VP (1.4) for data / € L2(ü). 

We write 
Ufe = Uh + Up 

where uh is based on the nodal shape functions and up on the internal ones. From 
the definition of the shape functions Nj and orthogonality property of the Legendre 
polynomials it follows that 

IKell2 = Kll2 + IKII2- (3-7°) 
Furthermore, up satisfies on each element A eq (3.18). Transforming A -> I+ = 

(0,1), we get 

\/w € SP
0(A) :     BK(upiw) = h2(f,w) + K2(uh,w). (3.71) 

We now prove a first stability lemma on ||Wp|| for data / € L2(tt). 

Lemma 3.2 Let, for ufe be the finite element solution to the VP (I.4) with data 
f G L2(Ct). Assume that hk < a < TT. 

Then 
IKell < C\\f\\ (3-72) 

holds with a constant C independent of h,k and p. 
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Proof : Let ufe = uh + up as defined above. We know (cf. part I, Lemma 3) by 
straight estimation of the discrete Green's function representation that \\u'h\\ < Ci||/||, 
where Ci does not depend on h, k and p. Applying eq (2.5) from Lemma 2.2 and 
Remark 2 to eq (3.71), we have 

\\u'p\\<D (h*\\f\\ + K2\\uh\\) 

where D = 7r/(7r2 - a2). Back-transform to A then yields 

KI|A<^(l|/l|A + fc2|K||A). 

Summing up and applying Schwarz inequality, we get 

\\u'p\\<Dh(\\f\\ + k'\\uh\\)<\\f\\h(D + C2k) 

where we applied k\\uh\\ < C2\\f\\ with C2 not depending on h,k,p. Thus 

\\u'Je\\ < (Ci + Dh + C2kh) 11/11, 

and the statement is readily obtained by neglecting Dh and setting C = Cx + C2a. 

The proof is completed.   < 

We now prove the inf-sup-condition for VJ, = Sl(ti). 

Lemma 3.3 (Discrete inf-sup-condition): Let Vh = Sp
h{ü) and let B:VhxVh^> 

C  be the sesquilinear form defined by eq (1-4)- 
Then, if h is such that hk < a < ir, 

.   ,. \B(u,v)\      C /O 7o\ 
inf sup ',  , ,  /' > T (3-7<i) 

«€VhueVh   |«|i|«|i k 

where C does not depend on h, k and p. 

Proof : The argument is similar to the case p = 1. For arbitrarily fixed u € Vh set 
v := u + z where z € Vh is solution to the VP 

VweVh:      B(w,z) = k2(w,u). 

Let z := zh + zp as above. In part I it was shown that 

II4II < c2k (jfj M. 
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The ratio k/k' is bounded for kh < TT and p > 2 by Theorem 3.2. Further, zp solves 

locally, i.e. for all w € S?{A), 

BA(zp,w) = k2(u + zh,w)&. 

Applying Lemma 2.2 and Remark 2, 

ii*;n<cifc(iHi + w). 

Again by discrete Green's function representation, we can show that \\zh\\ < C2||u'||, 
with C2 not depending on h,k and p.   Applying a Poincare inequality for ||u||, we 

conclude 
\\z'\\ < C3k\\u'\\ 

and the statement is concluded, using the particular choice of z (cf. part I).  <1 

It follows by standard theory that |u|i < C&||/(_1)||. 
We collect both stability estimates in the following proposition. 

Theorem 3.3 (Stability of the FE-solution I): Let f 6 L2(ü) and let u}e £Vh = 
Sl(Q,) be the finite element solution to the VP (14). 

Then, if h is such that hk < a < 7r, the stability estimates 

Keli < Cill/ll (3-74) 

and 
|«/.|i < C2k\\fl-V\\ (3.75) 

hold for Ci, C2 not depending on h, k and p. 

Next we formulate a dual stability property that we will use to prove a preasymp- 
totic error estimate for the p-degree finite element solution. To this end, we define a 
specific data subspace. 

Definition 3.1 For integer I > 0 we define a subspace F0'(fi) C L2(Ü) by 

fj(ft) = {/ G L2(Ü)   |    /<-"» |jrk = 0   for  t = l.../} 

with F°(Ü) := L2(Ü). 
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Observe that for this space we can show, by adding up local Poincare inequalities, 

||/(-)||<^||/(-^)||. (3.76) 

In particular, for / € F} and hk < a, inequality (3.74) directly follows from (3.75). 
For the discrete data obtained from / € Fj(fi) by the finite element procedure, the 

following proposition is true. 

Lemma 3.4 Consider the VP (1.4) on Vh = S£(«) with data f € FT1^)- Let Aj be 
an arbitrary finite element and let {rj-i,rj}T be the condensed right hand side vector 
given by eq (3.26). Assume further that the stepwidth h is sufficiently small so that 

hk <  a < -K. 

Then 
Irjl^C^m^nif^U, (3-77) 

holds for even m = 0,2,... < p - 1 with 

Cd(p,0) = l 

Cd(P,m) = Cx + C2c?     2^ ((p_m + 1)!)2> m ~ l 

where C\,C2 do not depend on h,k and p. 

Proof : Let first m = 0. We omit in the notation the element number j and renumber 
formally {fj-i,rj} -> {n,r2}. Eq (3.26) then reads 

M- ;; -wiw{ 
r3 

It is straightforward to show that n = (/,-/VI)A and r2 = (/,#2)A satisfy |r,-| < 

Define {y} := [-B22]-1 {^3, • • • ,rP+i}T- Tnis vector is the discrete solution to the VP 

VweSp
0(A):     BA(y,w) = (f,w)A 

and by Lemma 2.2 and Remark 2, 

Hy'll^-r^-ill/IU. TT* — or 
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By simple computation, \\y'\\2A > J|{y}|2, hence 

|{y}| < CI^
3/2

II/IIA, 

where C\ = 7r/(7r2 - a2) does not depend on h, k and p. 
Consider now the term {z} := [Bl2)[B22]-x{rz,... ,rp+l)

T = [Bl2]{y}. The coef- 
ficients of the matrix [B12] are b{j = BA(Ni,Nj) with i = 1,2 and j = 3.. .p + 1. 
For these z',j we can, using integration by parts, that (JV/,AJ)A = 0 and hence 
jy = -k2(Ni,Nj)±.   Obviously, the euclidian norm of the rows {k},i = 1,2 can 
be bounded as 

\{bi}\<C2k
2h. 

The constant C2 does not depend neither on h, k nor on p since the bandwidth of the 
local mass matrix does not increase with p for p > 3 (cf. [SB, p.46]). 

Thus, with the previous estimate of \\{y}\\, for i = 1,2, 

\zi\ = toil < KMUIMU 

<   C3ä
1/2

||/||A (3-78) 

with C3 = CiC2a
2- Together with the observation for n,r2, the last estimate proves 

the statement for m = 0. 
Let next m > 2 and assume for convenience that A has been mapped to I+ = (0,1). 

Then, for j = 1,2, 

fi = h[1 f(8)<Pi{0)M (3-79) 

where yutp2 € SUI+) or 5J(/+), resp., are the 'one-element' solutions to the homo- 
geneous Helmholtz equation 

u" + k2h2u = 0 (3.80) 

with the boundary conditions 

u(0) = l,  ti(l) = 0 (3.81) 

or 
u(0) = 0,  u(l) = l, (3-82) 

resp. The exact solutions U and t2 of these BVP are 

titf)   =   cos kh6-cot kh sin khO (3.83) 

t2(6)   =   sin khO/sin kh. (3.84) 
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Integration by parts in eq (3.79) leads to 

\Pj\ = h\[1f-m)(Ö)^m\9)de\; 
JO 

no boundary terms occur for m < p - 1 since / € F*"1^)- Consequently we have for 

;~1,2 |fil<MI/(-m)ll/+ll^)ll/+- 
For the estimation of ||^m)||/+, we define Xj € Sp

{o{I+) or S*e)(I
+), resp., by 

Xi(0) ■■= MO) - Onil) 

and 
X2(0):=T2(0) + 0(1-T2(1)) 

where T^,T2 € SP(I+) are the Taylor polynomials of order p in 60 - 0 for *j(0) and 
/2(0), resp. Now trivially 

ikSB,ii/+<ik5m)-xSm,ii/+ + iix5m)ii/+- 
As to the second member on the r.h.s., it can be shown by direct computation that for 

even ra > 2 
\\xf\i* < C.ihkr. (3.85) 

holds with a constant C\ not depending on h, k and p.   Turn to the estimation of 
||^(m) _ x("0||/+. For m = i, We have 

IVi " Xili < \tj - Vili + \*i ~ Xili < Gib ~ Xili (3-86) 

by Cea's lemma. 4 By construction of \j, 

fe-.|1 = l,-,l + 0(^)^3((f), (3.87) 

where C3 does not depend on h, k and p. 

For m > 2, we use repeatedly the inverse inequality (3.2) to relate 

-*r'ii^GSyv,wi«-*i- H^m)       „<») 

4To be precise, we write *,¥> as sums of linear and bubble functions and apply the statement of 
Cea's lemma on an appropriate subspace Vh C H0(I

+). 
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Inserting this estimate into (3.86) vs. (3.87), we conclude that 

where C4 = C2C3 does not depend on h, k and p. 

\\<p) '\\i+ < Ci(hk)   +C74((p_m + i)!)a2 ^fcJ 

and, finally 

The statement now follows by back-transform 7+ -► A. The proof is completed.   < 

Remark 9: For odd m this statement holds true with the additional assumption that 
hk is bounded from below, i.e. 0 < ß < hk. 

Let us show this for m = 1 and j = 2. We have 

IIX2||<IKII + I|I-T2(I)|| 

By construction, the second member is O (^). Also T&9) = t'2(0)+O (^f ). Hence, 

neglecting terms of higher order (note that by assumption p> m), 

kh 
llx',11  <  ll*'a|| = -^kh\\coskhe\\t+ 

Furthermore, \<p2 - xa|i = O (^). Hence \\<p'2\\n- < C2 and 

|r2|   <   C2MI/(-a)ll/+ 
< Cth-^Wf^u 

after back-transform 7+ -» A. Multiplying and dividing now by kh}'2, we get 

<   Ch}'2k\\f^U 
with C = C2ß~1. This shows our case; the argument for j = 1 or higher m is similar. 



42 F. Ihlenburg and I. Babuska 

Corollary 3.1 For the norm of the discrete right hand side Rh) the estimate 

\\Rh\\H<Cd(p,m)hkm\\f^\\ (3-88) 

holds for m = 0... < p — 1. 

Proof : By definition (cf. part I), 

\\R4l = h±\Ri\2 

where the coefficients R{ are given by eq (3.30). By Lemma 3.4, 

IlÄfcll*   <   Cd(p,m)(^h±hk^\\f^\\l/j 

and the statement readily follows.   < 

We now prove a proposition on dual stability if the data / € F™(ti). 

Theorem 3.4 (Stability of the FE-solution II): Let ufe £Vh = Sp
h{Ü) be the FE- 

solution to the VP (14) with data f G F0
m(ft), where m is even, m<p-l. Assume 

that 0 < kh < a < 7r. 
Then ,   , 

Mi < Cd(p,m)km\\f^\\ + C1||/*-1>||, (3-89) 

where Cd is the discrete dual stability constant (cf. Lemma 34) and Cy. does not depend 

on h,k and p. 

Proof : In light of Theorem 3.3. we only need to prove the statement for m > 2. 
As before, we write uje = UH + up. Then 

by Lemma 3.2. It can be shown, using the Green's function representation of uh that 

IKII + Cifc2||til-1,||<^||Ä||*. 

where C2 does not depend on h, k and p. On the other hand, 

||i?||<C^,m)/>ni/(_m)ll> 
from Lemma 3.4, and the statement follows. The proof is completed <1 

Remark 10: The stability theorem holds for odd m with the additional assumption 
that 0 < ß < hk - cf. the previous remark. 
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3.5    Error estimates for the finite element solution 

Throughout this subsection, we denote by / the regularity of the exact solution u, i.e. 
we assume that u G V1 := Hl+1(Ü) n V with V = ff^ß). 

In part I we proved that the finite element solution is asymptotically quasioptimal. 
The same result holds for higher approximation. However, the range of asymptotic 
behaviour, as taken w.r. to the meshsize h'1, grows with p. 

Theorem 3.5 (Asymptotic estimate): Let I > l,p > 1.  Let further u € V and 
Ufe eVh = Sl{Ü) be the exact and finite element solutions to the VP (14), resp. 

Then, if k2h/p is sufficiently small, the quasioptimal estimate 

\u - u/e|i < C inf \u - u|i (3-90) 

holds with 1,2 

r-l 4+w ^|    . (3.91) 

provided the denominator of C is positive. 

Proof : Denote e := u - uJe and let z be the solution to the VP 

Vw € V :    B{w, z) = {w, e). (3.92) 

This problem has a unique solution z € H3{ü). We can show (part I, Theorem 3) that 

\\e\\2<2(\z-w\1\e\1 + k2\\z-w\\\\e\\) 

holds for all w G V.  In particular, for w = s, where s is the approximation of z as 
constructed in Theorem 3.1., we have 

||e||2<2(AN2|e|1 + Ä;
2(Ay|2|3||e||). 

We now apply the stability estimates (part I, Lemma 1, and eq (2.24), Theorem 2.1) 

to get 

\Z\2     <     (1+*)|M| 

|z|3   <   (l+4A:)||e||x<^|(l + 4*)|e|1 
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|e||2 < 2 I A(i + *) + *' (1 + 4k) (±)   J| |  ||e|| |e|i; 

by Poincare inequality since e € i/(0(ft). 
Hence 

£<1 + *> + ^ 'v*, 
dividing now by ||e|| and neglecting terms where h is of order higher than k, we arrive 
at the intermediary result 

MSTa+l/K")'*!" (3-93) 

In the next step we use B-orthogonality of e to show (cf.  again part I, Theorem 3) 

that 
5|c|?<6Jfc2||c|r + 4|«-t;|; + *a||u-i;||2 

Lt 

holds for all v € Vh. We choose v = s from Theorem 3.2, then 

and applying now eq (3.93) we obtain 

&-"{?>* + £{$»***+%*-* 
hence 

\e\i<C\u-s\! 

where , ,, 

c = *+(«)' 
\: 

This completes the proof.   <1 

Remark 11: For piecewise linear approximation we proved (part I, Corollary 2) 

\u-ufe\ < Cx inf \u-v\x vevh 

ith , 
2(l+(j)y 

(1-6C,W(1+ *)')' 
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where n 

a = 

p+i 

(1-2(1+ *)*£)*' 

Obviously C2 > 2, hence k4h2 < ^ is necessary for well-definiteness of C%. A similar 

computation yields k4h2 < g as a necessary condition for well-definiteness of C in the 

theorem above. 

Remark 12: In the form given in Theorem 3.5, the quasioptimal estimate holds 
independently on the regularity of the solution u. The order of convergence, in terms 
of hp-1, is obtained by introcucing the approximation property of the subspace Vh from 
Theorem 3.1. For given p, the maximal order of convergence 

\u-uSe\,<C{el2?*{*p)-xl4(£j\u 

is achieved when the regularity of u is / > p. 

We now proceed to error estimates in the preasymptotic range (i.e. without restric- 
tions on k2h). Let us first relate the finite element solution to best approximations in 
Vh = S£(ft), as constructed in Theorem 3.1. 

Lemma 3.5 Let, forp> 1, u and ufe be the exact and finite element solutions to the 
VP (1.4), resp., and let s € Vh be a nodally exact quasioptimal approximation to u in 

the sense of Theorem 3.1. 
Then z := ufe-s is the finite element solution to the VP (1.4) with data k2(u-s). 

Proof : Trivially z = ufe - u + u - s, and by ^-orthogonality of u - ufe to Vh, 
B{z,v) = B{u - s,v) holds for all v € Vh. The boundary term in B(u - s,v) vanishes 
due to u\Xh = s\Xh. Using local exactness of the integrals of s we show, repeatedly 
integrating by parts, that also the term ((u - s)>') vanishes. Thus, for all v € Vh, 

B(u -s,v) = -k2(u - s, v) 

which completes the proof.   < 

It is now straightforward to show a first error estimate. 

Theorem 3.6 (Preasymptotic estimate I): Let, for I < I <p, u £Vl and ufe € Vh 

be the solution and the finite element solution to the VP (1-4), respectively. Assume 

that hk < a <%. 
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Then for e := u - u/e 

\e\i<Ca{l)[l + Cik 
'kh 

Tp    H'+1 (3.94) 

holds, where G\ does not depend on h, k and p, whereas Ca(l) is the approximation 

constant (Theorem 3.1), being at most of order {^) . 

Proof : Let z = ufe - u + u - s as above. By Theorem 3.3 and the previous lemma, 

\z\i<Ck2\\u-s\\, hence 

je|a = \z + u-s\1< Ck2\\u - s\\ + \u - s|i. (3.95) 

To complete the proof, we insert the appropriate results from the approximation the- 

orem.   <1 

Remark 13: Note that, if k2h/2p is bounded, the error estimate is equivalent to the 
asymptotic quasioptimal estimate given in Theorem 3.5. This, again, is an analogy to 
the /»-version with p = 1 (part I, section 3.6). 

The estimate of the previous lemma can be generalized for p > 2, employing dual 
stability estimates for the data k2(u - s) € F0

p-1(ft). 

Theorem 3.7 (Preasymptotic estimate II): Let 1 < I < p and 0 < m <j>, m 
even, with p>2. Let u € V be the solution to the VP (14) vrith data f € #{'_1)(ft) 
and let ufe € Vh be the finite element solution to this problem. Assume further that the 
stepwidth h is such that hk < a < ft. 

Then 

|e|i < Ca(l) 1 + Ci (YJ   + kCd(p,m)Ca{m) \^—j 
'hT 

M/+1.       (3-96) 

holds with C\ not depending on k,h,p. 

Proof : Let 5 G Vh be a nodally exact, optimal approximation of u in the sense 
of Theorem 3.1 and define, as before, z := ufe - u3. We know that z solves B(z,v) = 
-k2(u - s,v) for all v G Vh. The data of this problem is in the space F* 1, hence by 
Theorem 3.4. 

|*|i < k2 (Cd(p,m)km\\(u - 5)(-m>|| + d||(u - s)(-V\\) 
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holds for m < p - 1. Inserting the from Theorem 3.1 

(,   \ l+m+l 

Tp) ,tt|/+1' 

we conclude the statement.   <J 

Remark 14: With the additional assumption 0 < ß < kh, the statement holds also 
for odd m - cf. remarks 9,10. This assumption is consistent with the error estimation 
in the preasymptotic range and with computational application where the magnitude 
of hk is, for medium and high k, bounded from below by practical considerations. 

Remark 15: We obtain estimate I from estimate II by setting m = 0, hence II gener- 

alizes I. 

Let us specify the estimate II for a certain type of solutions, namely, those oscillating 
with frequency k. These solutions are of practical importance in physical applications 
in wave propagation and wave scattering; they are, among others, produced by Dirac 
data (point sources). 

Thus, having in mind to specify solutions that essentially behave like exp(ifcx), we 

define: 

Definition 3.2 Let, for I > 1, u (E V be a solution to the VP (14). We call u an 
oscillating solution if 

|4+i < Dk'luU (3.97) 

holds with a constant D not depending on k. 

With this definition, we directly have the following corollary. 

Corollary 3.2 (Error estimate for oscillating solutions):  Let 1 < / < p and 
p > 2. Assume that there is given a data f € H1'1^) such that the solution 
u€Vl to the VP (1.4) is oscillating. Assume further that the stepwidth h is such that 
hk <a<ir. Let ufe €Vh = S£(tt) be the finite element solution to the VP (14). 

Then the relative error |e|i := \u - u/e|i/|u|i is bounded by 

l+m+l 
, ,        fhk\ *+*(S)' + kC3 (^) . (3.98) 
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where d = DCa(l),C2 = ECa(l) and C3 = DCd{p,m)Ca{l)Ca(m), with D,E not 

depending on h,k and p. 

Proof : We introduce the definition of oscillatory behaviour into the estimate II, 

eq (3.96).   <I 

Let us consider special cases of the previous corollary. 

1. If / > p we have with 6 := (^)P 

|e|x < 9{Ci + C20
2/p) + C3kO\ 

This is principally the estimate that was given in the analysis of the h-version - 
cf. Introduction, eq (1.5) - with 6 = kh. Note also that, formally, the error is 
written as the sum of best approximation error plus pollution term of the order 
or the phase lag. However, the constant C3 depends on p (see next section). 

2. In the case of lower regularity (/ < p) the pollution is for higher p relatively (i.e. 
compared to the best approximation order) still smaller as in the case of full 
regularity. Consider the lowest possible case of Dirac data. Then / = 1 and the 
estimate is 

|e|i < e(Cx + C20
2) + C3k6p+1 

In general, the constant C3 depends on m. Note that, for fixed approximation 
order p, one is free to choose m in the range of 0,... ,p - 1. This can be used to 
optimize the size of the pollution term C3(p,m)(/ifc/2p)'+m+1. 

Remark 16: We will show in the numerical evaluation that the constants Ci,C2 are 
sharp. On the other hand, the theoretically predicted growth in C3(p) was not ob- 
served in several numerical examples. It is an open question whether the dual estimate 
is sharp in the pollution term. 

We conclude this subsection with an error estimate in negative norms.   We first 
show a mapping property; the proposition then readily follows. 

Lemma 3.6 Let u € V and ufe € Vh be the exact and the finite element solution to 

the VP (1.4)- Then, forl<m<p-l, 

/hh\m+1 

\\e\\.m<DCa(m + l)k[^j       lei, (3.99) 

where Cs is the stability constant from Theorem 2.1 and D is a constant not depending 

on h and k. 
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Proof : Since X = H™{ti) is a Hubert space there exists v0 € X s.t. 

II it Ke>u°)l 

Let z € Hm+2(ü) U #J,(ft) be the solution of the VP (1.4) with data v0.   Then by 
Theorem 2.1. we have 

|*|m+a<C.(m + l)*m||t;.||m 

where Cs grows at most linearly with m. On #(™, the full norm || • ||m is equivalent to 
the seminorm | • |m, hence there exists a constant C\ s.t. 

\z\m+2 < CiCa{m + l)km\v0\m. (3.100) 

Further, from  B{z - x, e) = (ve, e)  for all x € Vfc we conclude 

||e||_mKU   <   C0{k) MJz-xlMx 

(h \m+1 

i>)   kU+2|e|1 

where the continuity property of the form B and the approximation property of Vh 

have been used. The statement now follows, inserting eq. (3.100).   < 

Theorem 3.8 (Dual error estimate): Let u € V and ufe € Vh be the exact and 
the finite element solution to the VP (14). Assume \<m<p-l and I <l <p. 

Then, if hk < a < T, 

|e||-m <C(m,l) Cx + C2K
2± 

2p 

m+l+l 

^1 II/IIP-I (3-101) 

holds, where C(m,l) = Ca(l)Cs(l)Cs(m + l), whereas d,C2 do not depend on h,k and 

P- 

Proof : Combining Lemma 3.7 with the preasymptotic estimate I, as given in 
Theorem 3.6, we obtain an estimate w.r. to |u|/+i. The statement is then concluded 
from Theorem 2.1   < 

Remark 17: All propositions on the finite element solution contain the assumption 
hk < -K. Essentially, we ensure herewith that the inversion of the local stiffness matrices 
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is well defined (hk has to be smaller than the minimal eigenvalue of the condensation). 
However, the inversion is also well defined if hk lies between the first and the second 
eigenvalue and so forth (to be more precise: is bounded away both from the first and 
second exact and the corresponding numerical eigenvalues). It is expected that, under 
this condition, more than one halfwave can be resolved by one element of higher ap- 
proximation in practical computations. 

4    Numerical evaluation 

In this final section we present some results of numerical experiments that illustrate 
the theoretical results obtained in the previous section. We solve the model problem 
for the constant data / = 1. The exact solution 

„(a.) = _L ((l _ cos kx - sin k sin kx) + i(l- cos A:) sin kx)). 
K 

is regular and oscillating. 

Best approximation in Sv
h: In Theorem 3.1 we constructed a function s € S£(ft) 

that has the best tf1-approximation property to a given function u € Hi+1(tt). Writing 
s locally, after scaling to J = (-1,1), as 

t=i 

we have, by interpolating property, c[j) = «,-_! and c{
2
j) = Uj. Further, by orthogonality, 

cf = (u'ü), JV/). and |e6a|f = |u - s\\ = \u\\ - M? with 

The approximation property, as given in Theorem 3.1, reads for m = 1 and / = p as 

where Ca is the approximation constant, growing as (e/2)p/p(l/4). 
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In Fig. 1 the error |e|i is plotted for k = 50 and hk < v. The slopes are -p, in 
accordance with eq (4.1). 

Consider next a plot for the approximation error on coarse grid (hk > n - Fig. 2). 
We observe an interesting effect whenever the mesh locally 'hits' the size of a halfwave 
(two, three, ...) halfwaves. To explain this effect, note that for k = rnr (m-integer) the 
solution u reduces to 

u = —(1 - coskx). 

Hence in this case we locally solve the problem of best Hl-approximation of uloc = cos x 
on one, two, three, ... halfwaves. For even n, this approximation problem is symmet- 
ric and has identical solutions for even/odd p (lines I, III in Fig. 2). For odd n, the 
problem is antimetric and has identical solutions for odd/even p (line II in Fig.2). We 
have choosen k = 2rmr to highlight the character of the observation. The same effect 
occurs, however, for any k if either k or kh are close to integer multitudes of v. 

Returning to the estimate in Theorem 3.1. - here: eq (4.1) - we next present numer- 
ical data illuminating the dependence of the constant Ca on p. Namely, for p = 1... 6 
and hk = 1 (case n = k = 50) we record the relative error, the measured value of 
Ci,meas(p) = |e|i,m£aS(2p)2p and the predicted Cx(p) from eq (3.5). 

Table 1: Constant Ca{p) in the Approximation Theorem: magnitude as computed 
from measured data compared to magnitude as computed from theoretical prediction 
in eq (3.5) 

p 6 l,meas L'afinea.s Ca, (3.5) 
1 0.2823 0.5646 1.02 
2 0.367E-1 0.5872 1.17 
3 0.3095E-2 0.6685 1.43 
4 0.1965E-3 0.9049 1.81 
5 0.9829E-5 0.9829 2.33 
6 0.4135E-6 1.2357 3.02 

We see that, for the particular case computed, both the magnitudes of the measured 
constant and it's growth rates with p are lower than the upper theoretical estimates. 
We conclude that for the example under consideration, no further growth with p occurs 
in the relative error due to the ratio |«|p+i/|u|i. 
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For graphical illustration we compare in Fig.   3 (for k = 30TT and m = 50) the 
estimated and measured errors for p = 1... 6. Namely, we plot (setting Ca{p) = 1) 

-p estn(p) = (n • 2p) 

for n = 50 and 1 < p < 6. We compare with the relative error |e|x as obtained from 
computation. The measured error is in close agreement with the estimator, indicating 

that the estimate (4.1) is sharp. 
Finally, we relate the error of best approximation to the number of degrees of 

freedom of the discrete model. In one dimension, this number is d := A_1p. For fixed 

k, the error estimate (4.1) becomes 

|g|x < £Md-p. (4.2) 
i u -    2p 

Observe in Fig. 4 both the predicted rate of convergence w.r. to d and the decrease of 
the multiplicating factor with the increase of p. 

Error of the finite element solution: The error of the finite element solution is 

computed by 

Mi     =    |« "«/ell 

j=i ^i ;=3 

where n 

A = Mi " h E (DjuDjüh + DjUhDjü - DjUnDjüh) (4.4) 
j=i 

is the error of piecewise linear approximation (cf. part I) and a\j) are the coefficients 
of the bubble modes in the local finite element ansatz, cf. subsection 3.2. 

In Fig. 5, the relative error of the finite element solution is plotted against the 
relative error of the best approximation. The wavenumber is k = 30TT and the results 
are compared for p = 1... 6. We clearly see the optimal convergence of the finite 
element solution for sufficiently small h. In the given example, the optimality constant 
C in Theorem 3.5 is asymptotically 1 as the figure shows. 

To illustrate the behaviour in the preasymptotic range, consider the horizontal line 
drawn at e = 0.1. Compared to the asymptotic behavior with the optimality constant 
close to 1, the finite element solution is significantly polluted on the preasymptotic 
error level. We give the numerical results in Table 2. 
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The error estimate for oscillating solutions has been given in Corollary 3.2, eq (3.98). 
For our solution, the special case 1. applies, hence we have the estimate 

\eU<Cl(p)9 + C2(p)k9 2   5 

with 

In this inequality, Cx{p)6 estimates the error of best approximation as discussed in 
the previous paragraph. The second member C2{p)k62 reflects the pollution and is of 
the same order as the phase lag (cf. Theorem 3.2). Theoretically, the constant C2 

may significantly grow with p, cf. Theorem 3.7 vs. Lemma 3.5. As the table shows, 
we do not observe this growth in the example considered. As commented before, we 
cannot exclude that the theoretically established dependence of C2{p) on p is due to a 
technicality in the proof. 

Finally we observe that the number of elements for which the finite element error 
is a fixed magnitude (given tolerance) decreases significantly with increasing p. 

Table 2: Errors of finite element solution and best approximation at e/e « 0.1 for 

p=1...6. 

5We neglect the term Ci(p)01+2/p of eq (3.98) 
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p i 2 3 4 5 6 

~(meas) 0.099947 0.09956 0.09683 0.0911 0.0829 0.09833 

n (# of dem.) 491 76 35 22 16 

80 

12 

72 fofDOF 491 152 105 88 

e={^) 0.09597 0.09612 0.0904 0.0822 0.07092 0.7861 

~(meas) 
eba 0.05538 0.05607 0.05640 0.05543 0.0520 0.0626 

C/e   ^ba 0.044567 0.04349 0.04040 0.03567 0.02380 0.0380 

ke2 0.8681 0.8707 0.7702 0.6373 0.474 0.5823 

C(P) = ^ 0.0513 0.050 0.0525 0.056 0.0502 0.0656 
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Figure 1: Relative error (eba) of the best /^-approximation in 5J(Q) to the exact 
solution. Rates of convergence in /T-seminorm for p = 1,2,..., 6 (k = 50, n = h~ - 
number of elements). 
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Relative error of best approximation in Hl-seminorm, k= 30*Pi, n=4,70,l, p = 1,6,1 

0.00001 

10. 15. 20. 

degrees of freedom 

30. 50. 

Figure 2: Relative error of the best approximation in H^seminorm on coarse grid for 
k = 30x. 
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Figure 3:   Relative error of the best approximation in i/^-seminorm: estimated vs. 
measured values for k = 30TT, n = 50 and p = 1,2,..., 6. 



Finite Element Solution to the Helmholtz Equation II... 59 

■f—p- i   i   i   i »■^"^■^■^"^■^■^H ' I 

0.1 

0.001 

u 
u > 

"a 

0.00001    r 

-7 
1.10 

150. 200. 

degrees of freedom 

700. 

Figure 4: Relative error of best approximation vs. number of degrees of freedom for 
k = 50 and p = 1,2,.. .,6. 
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Figure 5: Relative error of the finite element solution versus best approximation error 
for fc = 307T and p= 1,2,...,6. 
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